Deep Learning Based Method for the Estimation of Patient’s Angles from Lateral Skull Radiographs

نویسندگان

چکیده

Radiography is used for initial diagnosis and postoperative follow-up. If a radiograph deemed unsuitable diagnosis, it rejected. Retaking disadvantageous the patient because prolongs examination time increases radiation dose. Skull radiography position in which retaking occurs most frequently. In skull radiography, patient’s rotational direction estimated from minute changes inner ear’s structure lateral radiograph. When retaking, amount of correction positioning generally errors rejected image through empirical evidence. Therefore, considerable expertise needed to correct appropriately, inexperienced radiologic technologists take estimate this error. This study aimed angle radiographs compensate technologists’ lack experience reduce burden on patients. The simulated 2-D line-integral projection 3-D CT image, we developed an estimation method using deep learning with supervised training. network based re-scaled ResNet. was superior-inferior directions. We evaluated accuracy projected images 256 cases. were 0.48 ± 0.41° 0.55 0.50° angles, respectively. These findings suggest that can be accurately learning, compensating reducing time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text

People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...

متن کامل

Deep metric learning for multi-labelled radiographs

Many radiological studies can reveal the presence of several co-existing abnormalities, each one represented by a distinct visual pattern. In this article we address the problem of learning a distance metric for plain radiographs that captures a notion of “radiological similarity”: two chest radiographs are considered to be similar if they share similar abnormalities. Deep convolutional neural ...

متن کامل

Deep Learning-Based Food Calorie Estimation Method in Dietary Assessment

Obesity treatment requires obese patients to record all food intakes per day. Computer vision has been introduced to estimate calories from food images. In order to increase accuracy of detection and reduce the error of volume estimation in food calorie estimation, we present our calorie estimation method in this paper. To estimate calorie of food, a top view and side view is needed. Faster R-C...

متن کامل

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

Deep Learning for Laser Based Odometry Estimation

In this paper we take advantage of recent advances in deep learning techniques focused on image classification to estimate transforms between consecutive point clouds. A standard technique for feature learning is to use convolutional neural networks. Leveraging this technique can help with one of the biggest challenges in robotic motion planning, real time odometry. Sensors have advanced in rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in artificial intelligence and applications

سال: 2022

ISSN: ['1879-8314', '0922-6389']

DOI: https://doi.org/10.3233/faia220578